Duis autem vel eum iriure dolor in hendrerit.

Faculty Emeritus/Emerita

Renee Z. Dintzis, Ph.D.

Renee Z. Dintzis, Ph.D.

Rob Jensen, Ph.D.

Rob Jensen, Ph.D.

Mitochondria play vital roles in the life and death of virtually all eukaryotic cells, mediating a diverse set of functions ranging from energy production to programmed cell death. Mitochondria are also incredibly dynamic, constantly moving, fusing and dividing. During cell growth, additional mitochondria are assembled from the import of proteins and lipids from the cytosol.  In three very different systems we are investigating the molecular basis of these fascinating activities.  

Selected Publications:
Kane LA, Youngman MJ, Jensen RE, Van Eyk JE. (2010). Phosphorylation of the F1-Fo ATP synthase beta subunit: functional and structural consequences assessed in a model system. Circ. Res. 106: 504-513.
Jensen, R.E. et al. (2008). What happens when Trypanosoma brucei leaves Africa. Trends Parasitol. 24: 428-431.
Yamano K, Yatsukawa Y, Esaki M, Hobbs AE, Jensen RE, Endo T. (2008). Tom20 and Tom22 share the common signal recognition pathway in mitochondrial protein import. J. Biol. Chem. 283(7): 3799-3807.
Alder NN, Jensen RE, Johnson AE.  (2008) Fluorescence mapping of mitochondrial TIM23 complex reveals a water-facing, substrate-interacting helix surface. Cell 134: 439-450.
Alder NN, Sutherland J, Buhring AJ, Jensen RE, Johnson AE.  (2008) Quaternary structure of the mitochondrial TIM23 complex reveals dynamic association between Tim23p and other subunits. Mol. Biol. Cell 19: 159-170.
Dunn CD, Tamura Y, Sesaki H, and Jensen RE. (2008). Mgr3p and Mgr1p are adaptors for the mitochondrial i-AAA protease complex. Mol. Biol. Cell. 19: 5387-5397
Dunn, C.D. et al. (2008) Mgr3p and Mgr1p are adaptors for the mitochondrial i-AAA protease complex. Mol. Biol. Cell 19: 5387-5397.
Cerveny, K.L. et al. (2007) Yeast mitochondrial division and distribution require the cortical Num1 protein. Dev. Cell 12: 363-375.
Davis, A.J. et al. (2007) The Tim9p/10p and Tim8p/13p complexes bind to specific sites on Tim23p during mitochondrial protein import. Mol. Biol. Cell 18: 475-486.
Cerveny, K.L., Studer, S.L., Jensen, R.E., and Sesaki, H. (2007). Yeast mitochondrial division and distribution requires the cortical Num1 protein. Developmental Cell. 12: 363-375.
Meisinger, C. et al. (2007) The morphology proteins Mdm12/Mmm1 function in the major beta-barrel assembly pathway of mitochondria. EMBO J. 26: 2229-2239.
Cerveny, K.L., Tamura, Y., Zhang, Z., and Jensen, R.E. and Sesaki, H. (2007). Regulation of mitochondrial fusion and division. Trends Cell Biol. 17: 563-569.
Peixoto, P.M. et al. (2007) Awaking TIM22: A dynamic ligand-gated channel for protein insertion in the mitochondrial inner membrane. J. Biol. Chem. 282: 18694-18701.
Sesaki, H. Dunn, C.D., Iijima, M., Shepard, K.A., Yaffe, M.P., Machamer, C.E., and Jensen, R.E. (2006). Ups1p, a conserved intermembrane space protein, regulates mitochondrial shape and alternative topogenesis of Mgm1p. J. Cell Biol. 173: 651-658. 
Jensen, R.E. and Sesaki, H. (2006) Ahead of the curve: mitochondrial fusion and phospholipase D. Nat. Cell Biol. 8:1215-2157.
Sesaki, H. and Jensen, R.E. (2001). UGO1 encodes an outer membrane protein required for mitochondrial fusion. J Cell Biol. 152:1123-34. 
Sesaki, H. and Jensen, R.E. (1999). Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J. Cell Biol. 147: 699-706. 

Joy Yang, Ph.D.

Joy Yang, Ph.D.

Selected Publications:
Hung, W., Chen, S, Paul, C.D., Stroka, K.M., Lo, Y., *Yang, J. T.  and *Konstantopoulos, K. (*co-corresponding authors).  (2013).  Distinct signaling mechanisms regulate migration in unconfined and confined spaces.  J. Cell Biol. 202, 807-824.
Rivera Rosado, L.A., Horn, T.A., McGrath, S.C., Cotter, R.J. and Yang, J.T. (2011). Association between a4 integrin cytoplasmic tail and non-muscle myosin IIA regulates cell migration.  J. Cell Sci. 124, 483-492.
Dikeman, D.A., Rivera Rosado, L.A., Horn, T.A., Alves, C.S., Konstantopoulos, K. and Yang, J.T. (2008).  α4β1 integrin regulates directionally persistent cell migration in response to shear flow stimulation.  Am. J. Physiol. Cell Physiol., 295, 151-159.  
Grazioli, A, Alves, C.S., Konstantopoulos, K and Yang, J.T. (2006). Defective blood vessel development and pericyte/pvSMC distribution in α4 integrin-deficient mouse embryos. Dev. Biol. 393,165-177.
Sengbusch, J.K., He W., Pinco, K.A. and Yang, J.T. (2002). Dual functions of α4β1 integrin in epicardial development: initial migration and long term attachment. J. Cell Biol.157, 873-882. 
Pinco, K. A., He W., and Yang, J. T. (2002). α4β1 integrin regulates lamellipodia protrusion via a focal complex/focal adhesion-independent mechanism. Mol. Biol. Cell 13, 3203-3217.

Abraham (Avi) Kupfer, Ph.D.

Abraham (Avi) Kupfer, Ph.D.

Research Topic: Signaling, cell-cell interaction, intercellular communication, immune cell activation, multi-dimensional imaging, novel biosensors

Selected Publications:
Kupfer, A. and Kupfer, H. (2003) Imaging immune cell interactions and functions: SMACs and the immunological synapse. Seminars in Immunology 19:4712-4722.
Freiberg, B. A., Kupfer, H., Maslanik, W., Delli, J., Kappler, J., Zaller, D.M. and Kupfer, A. (2002) Staging and resetting T cell activation in SMACs. Nat. Immunol. 18:6201-6208.
Potter, T.A., K. Grebe, B. Freiberg, and Kupfer, A. (2001) Formation of supramolecular activation clusters on fresh ex vivo CD8+ T cells after engagement of the T cell antigen receptor and CD8 by antigen-presenting cells. Proc. Natl. Acad. Sci. USA 92:819-828.
Kupfer, A. (2000) Breaking up receptor alliances: the parting of CD3 and CD4. Nature Medicine 16:2248-2254.
Monks, C.R.F., B.A. Freiberg, H. Kupfer, N. Sciaky, and Kupfer, A. (1998) Three-dimensional segregation of supramolecular activation clusters in T cells. Nature 166:4773-4779.
Monks, C.R.F., Kupfer, H., Tamir, I., Barlow, A., and Kupfer, A. (1997) Selective modulation of protein kinase C-theta during T-cell activation. Nature 46 (Suppl): S67-S72.

Ann Hubbard, Ph.D.

Ann Hubbard, Ph.D.

Selected Publications:
Barnes, N., Bartee, M.Y., Braiterman, L., Gupta,A., Ustiyan, V., Zuzel, V., Kaplan, J.H., Hubbard, A.L., Lutsenko, S. 2009. Cell specific trafficking suggests a new role for renal ATPB in intracellular copper storage. Traffic 10:767-779.
Braiterman, L., Nyasae, L., Guo, L., Bustos, R., Lutsenko, S., Hubbard, A. 2009. Apical targeting and golgi retention signals reside within a 9-amino acid sequence in the copper-ATPase, ATP7B. Am. J. Physiol. Gastrointest. Liver Physiology, 296(2):G433-444.
Nyasae, L., Bustos, R., Braiterman, L., Eipper, B., A. Hubbard. 2007. Dynamics of endogenous ATP7A (Menkes protein) in intestinal epithelial cells: copper-dependent redistribution between two intracellular sites. Am J Physiol Gastrointest Liver Physiol. 292(4):G1181-94.
Guo, Y, L. Nyasae, L. T. Braiterman, and A. L. Hubbard. 2005. N-terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells. Amer J. Physiol., GI/Liver 289(5):G904-16.